
NASA-C_-)0?i,_I

7

Predictions of Control Inputs, Periodic Responses
and Damping Levels of an Isolated Experimental

Rotor in Trimmed Flight

//

Final Technical Report Under NASA-Ames Research Grant No. NAG 2-797

G. H. Gaonkar

S. Subramanian

Prepared for the

U. S. Army Aeroflightdynamics Directorate (ATCOM)
Ames Research Center

Moffett Field, CA 943035

FLORIDA ATLANTIC UNIVERSITY

Department of Mechanical Engineering

College of Engineering

Boca Raton, FL 33431

July 31, 1996



Contents

Abstract 3

Nomenclature 3

1 Introduction 6

2 Experimental Rotor 7

3 Analysis 12

3.1 Elastic Flap-Lag-Torsion Equations .... ................... 12

3.2 Aerodynamics ................................... 12

3.3 Trim Analysis ................................... 21

3.3.1 Flap Moment Equations ......................... 21

3.3.2 Trim Equations .............................. 26

3.3.3 Steady Flap Moment Based on the Curvature Method ........ 26

4 Correlations 27

5 Toward Improving the Correlations 32

5.1 NACA0012 Dynamic Stall Characteristics ................... 32

6 Concluding Remarks 33

Acknowledgments 33

References 75

Appendix 77

2



.&bstract

Since the early 1990s the Aerofiightdynamics Directorate at the Ames Research Center

has been conducting tests on isolated hingeless rotors in hover and forward flight. The

primary objective is to generate a database on aeroelastic stability in trimmed flight for

torsionally soft rotors at realistic tip speeds. The rotor test model has four soft inplane blades

of NACA 0012 airfoil section with low torsional s¢_ffness. The collective pitch and shaft tilt

are set prior to each test run, and then the rotor is trimmed in the following sense: the

longitudinal and lateral cyclic pitch controls are adjusted through a swashplate to minimize

the l/rev flapping moment at the i2% radial station. In hover, the database comprises

lag regressive-mode damping with collective _,itch variations: -3 o _< 00 <_ 8°. In forward

flight the database comprises cyclic pitch controls root flap moment and lag regressive-

mode damping with advance ratio, shaft angle and collective pitch variations: 0 _< # < 0.:36,

0 s _< c_, _< 60 , and 0 ° <_ 00 _< 5.90 • This report presents the predictions and t.heir correlation

with the database. A modal analysis is used, in which nonrotating modes in flap bending, lag

bending and torsion are computed from the measured blade mass and stiffness distributions.

The airfoil aerodynamics is represented by the ONERA dynamic stall models of lift, drag and

pitching moment, and the wake dynamics is represented by a state-space wake model. The

trim analysis of finding the cyclic controls and the corresponding periodic responses is based

on periodic shooting with damped Newton iteration; the Floquet transition matrix (FTM)

comes out as a byproduct. The stability analysis of finding the frequencies and damping

levels is based on the eigenvalue-eigevvector analysis of the FTM. All the structural and

aerodynamic states are included from modeling to trim analysis to stability analysis. A

major finding is that dynamic wake dramatically improves the correlation for the lateral

cyclic pitch control. Overall, the correlation is fairly good.

Nomenclature

Unless otherwise stated, the symbols below are dimensionless:

a linear lift curve slope

a,z.a,,_ damping factors in dynamic stall drag and pitching moment models
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C,C

Cd, Cd o

cr

Cz,

Cz,

d

6

e f, -cf

C h , -Eh

Ed, Em

FM]j,. ..,FM_ 2

I,J,K

i,j,k

g,_

L_, L_o

M_

M

fl/[ n c

airfoil semi-chord, (l/R)

airfoil chord, (m, 1/R)

airfoil drag coefficient and constant profile-drag coefficient

quasisteady drag coefficient

airfoil lift and pitching moment coefficients

airfoil pitching moment coefficient at zero angle of attack

quasisteady pitching moment coefficient

thrust coefficient

thrust level

extrapolated linear-lift coefficient

quasisteady lift coefficient

dynamic-stall-lift damping parameter

phase shift parameter in dynamic stall lift model

radial station for flapping moment estimation, (1/R, m)

hinge offset, (1/R, m)

phase shift parameters in dynamic stall drag and

pitching moment models

Galerkin-type integrals, Eq. (20)

unit vectors associated with inertial frame

unit vectors associated with undeformed blade coordinate system

mass radii of gyration of blade cross section about its principle axes

blade span, 1 - eh, (I/R, rn)

sectional aerodynamic forces

total horizontal and vertical forces, (N)

mass per unit length, (kg/m)

reference mass per unit length, (kg/m)

aerodynamic pitching moment

total pitching moment, (Nm)

total flap moment at el, (1/pbf_2R 4)

n-th harmonic cosine component of f14
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0

Oo

6_,0_

A

A2

#

n-th harmonic sine component of .M

steady component of ,_

root cutout, (l/R)

frequency parameters in dynamic stall drag and

pitching moment models

radial station of the i-th blade, (l/R)

rotor radius, (m)

time, (I/a)

inplane (lag) bending deflection

dimensional inplane (lag) bending deflection

generalized coordinate of i-th mode for lag degree of freedom

dynamic stall lift frequency parameter; also out of plane

(flap) bending deflection, (I/R)

dimensional out of plane (flap) bending deflection

generalized coordinate of i-th mode for flap degree of freedom

inertial coordinate system

undeformed coordinate system

radial distance measured from the rotor center, (1/R, m)

blade airfoil angle of attack

shaft angle, (deg, rad)

quasisteady stall angle, (deg)

blade precone, (deg)

Lock number (blade inertia parameter)

pitch-rate coefficient

blade pitch angle

collective pitch angle, (deg, rad)

lateral and longitudinal cyclic pitch angles, (deg, rad)

time-delay parameter

flap bending stiffness, (1/rn_2R 4)

advance ratio



O" S

tPi

P_

Poo

f_

( )A

()'

()

()'

NEL

NOM

rpm

rotor solidity

azimuthal location of the i-th blade

i-th flap mode

blade mass density (kg/m 3)

air density (k9/m a)

rotor angular speed, (rad/sec)

aerodynamic component of ( )

inertial component of ( )

time derivative of ( )

spatial derivative of ( )

approximately equal to

number of aerodynamic elements

number of modes each in flap bending, lag bending and torsion

revolutions per minute

1 Introduction

In the early eighties, McNulty experimentally investigated the stability of isolated hin-

geless rotors in forward flight under untrimmed conditions [1]. The strengths of the ex-

periment were structural simplicity and aerodynamically demanding conditions. In fact, the

hub-flexure-blade assembly was intentionally designed to approximate closely root-restrained

rigid flap-lag blades, and the database included dynamically stalled conditions with advance

ratio as high as 0.55 and shaft angle as high as 200 . Many investigations right until to-

day have been driven by the database in Ref. [1], and these strengths helped isolate the

aerodynamic aspects of the stability problem in forward flight (Refs. 2-8), particularly the

nonlinear dynamic stall aspects. However, the weaknesses of the experiment were low tip

speed and the lack of a swash plate. For example, the collective pitch and shaft angle were

the only control inputs, which were manually set prior to each run. This resulted in the

unusual flight conditions of unrestricted tip path planes with very large negative coning an-



gles. To remove these weaknesses Maier et al. have been conducting experiments since the

early '90s on isolated hingeless rotors with torsionally soft blades [9]. Moreover, they also

recognize the increasing need for a database on torsionally soft blades in forward flight [9].

Thus, stated explicitly, the primary objective of their tests was to generate trim and aeroe-

lastic stability data for torsionally soft rotors operating at realistic rotational speeds. The

rotor is operated under trimmed conditions of minimized 1/rev root flap moment (details to

follow). Thus, the database of Ref. [9] includes test results on lag-regressive mode damping,

longitudinal and lateral cyclic pitch controls and steady root flap moment.

With this background, we now spell out the objectives of this report:

1. Develop an elastic flap-lag-torsion analysis for required trim conditions of minimized

1/rev root flap moment.

2. Predict trim results of longitudinal and lateral cyclic pitch controls, and steady root

flap moment as well as stability results of modal frequencies and lag damping levels.

3. Correlate these predictions with the database of Refs. [9] and [10] and thereby isolate

the effects of quasisteady stall, dynamic stall and dynamic wake on trim and stability

results.

2 Experimental Rotor

To facilitate discussion and presentation of results, we briefly describe the experi-

mental rotor of Maier et al. [9]. It is a soft-inplane hingeless rotor with torsionally soft

blades. The 7.5-ft rotor has four blades of an NACA 0012 airfoil section. The blade chord

is 3.4-in and has a rectangular plan form as shown in Fig. i. Furthermore, the blades have

two-degree precone, and zero-degree pretwist and droop. The rotor also has a provision to

vary the blade precone. The blade mass-center, tensile, aerodynamic and elastic axes are

nearly coincident with the control axis, which is at the quarter-chord point. Table 1 summa-

rizes the rotor properties of the experimental model. The test-model blade including other

details of the hub attachment are given in Figs. 1 and 2. Basically, the blade comprises four

distinct regions. The first region is a hub section with very high stiffness values. The second

7



PITCH_ ,,-.---FLEXURESECTION
ANGLE\ /

SENSOR 1 /'--FEATHERING _ ,,----TRANSIT,ONSECT'ON
BEARING

HUB BLOCK-_ //_-CONSTANT BLAOE

i ==2

PITCH LINK ROOT CU

Figure 1: Hub-Flexure-Blade Assembly

region is a root-flexure section, which accommodates the blade flap and lead-lag motions.

The third region is a short transition section, which is relatively stiff and provides transition

from the blade root-flexure to the airfoil section. The fourth section is the NACA 0012

blade portion. Table 2 details the stiffness and mass distributions in each of these sections.

The model is designed so that the test data correspond to stability of isolated rotors. The

separation between the lag-regressive mode frequency and the lowest test-stand frequency is

7.1Hz, which is far above the lag regressive-mode frequency.

The collective pitch angle (00) and shaft tilt angle (as) are set prior to each run and

are known parameters. The rotor is operated trimmed with lateral and longitudinal cyclic

pitch controls. The cyclic pitch controls are exercised through a conventional swash plate

mechanism that controls pitch on the blade root cuff at a location inboard of the flap-lag

flexure motions (Fig. 1). According to Ref. [9], such an arrangement minimizes root-end-

kinematic coupling effects and thus avoids any contamination of the aeroelastic stability data

with kinematic nonlinearities. The rotor is operated at 1700 rpm, which in hover gives a

Reynolds number of 1.2 x l0 s and Mach number of 0.6 at the blade tip.

In hover tests, the rotor is set at the desired speed and collective pitch angle. The

shaft angle is set to zero degrees. Then, low-amplitude cyclic excitation is applied and

the frequency of the excitation is adjusted until the lag response of the first blade reaches



Table 1: Details of the Experimental Rotor
Number of blades 4

Airfoil section NACA 0012

Hover blade-tip Machnumberat 1700rpm 0.6

Hover blade-tip Reynoldsnumberat 1700rpm 1.2x10_

Rotor radius, ft 3.75

Blade chord, in 3.4

Nonrotating fundamental flap frequency, Hz 4.499

Nonrotating fundamental lead-lag frequency, Hz 14.405

Nonrotating fundamental torsion frequency, Hz 64.362

Blade precone, deg 0.0 and 2.0

Blade pretwist, deg 0.0

Blade droop, deg 0.0

Blade sweep, deg 0.0
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Figure 2: Schematic of Hub-Flexure-Blade Assembly

a maximum. To obtain a strong decaying transient signal, the magnitude of the cyclic

excitation is adjusted till the maximum allowable lag response is reached; the maximum

allowable is based on the blade structural limit. The excitation is stopped and the ensuing

transient signal is recorded for 2 seconds.

In forward-flight tests, the shaft angle is set first and the rotor speed is brought up to the

desired value. Then, the collective pitch is set, wind tunnel air speed is increased slowly to

the desired forward-flight speed and the cyclic pitch controls are adjusted to maintain low-

oscillatory flapping loads. When the desired forward-flight speed is reached, the collective

pitch is readjusted to get the desired value and the cyclic pitch controls are further adjusted

to minimize the 1/rev flapping moment at the 12% radial station. Then, low-amplitude

cyclic excitation is applied. The frequency and magnitude of the excitation are adjusted

so that the maximum lead-lag response (but below the structural limit) is attained. The

excitation is shut off and the ensuing transient is recorded for 2 seconds. The recorded

signals are analyzed using the moving-block analysis technique to obtain modal damping

and frequency. Reference [9] provides additional details on the model rotor design and test

procedures.
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3 Analysis

3.1 Elastic Flap-Lag-Torsion Equations

The flap-lag-torsion equations of motion are nonlinear partial differential equations,

which are given in Ref. [6]. We use a Galerkin-type scheme to transform these partial

differential equations into a set of ordinary differential equations in terms of generalized co-

ordinates. Orthogonal, nonrotating normal modes are used, which are developed numerically

with mass and stiffness distributions identical to those of the experimental rotor; see Table

2. ln-vacuo conditions are assumed; that is, without aerodynamics and the frequencies are

obtained from an eigenanalysis. A Mykelstad-type approach is followed in generating the

modes. As shown in Table 2, the stiffness distributions for the transition region (region 3)

are not given because these distributions change continuously over this region and it was not

possible to measure them [9]. In the present correlation work, we assume a linear variation

for stiffness properties in that region while computing the mode shapes. Figures 3-5 show

the nonrotating mode shapes for the first five flap bending, lag bending and torsion deflection

modes. These modes are normalized with a tip deflection of one. The corresponding five

nonrotating frequencies are tabulated in Table 3. Using these normal modes, the equations of

motion are transformed into a set of modal equations in terms of the generalized coordinates.

The Galerkin-type integrals associated with this transformation for spatial dependency are

evaluated numerically and are given in Ref. [6].

3.2 Aerodynamics

The airfoil aerodynamics is based on the quasisteady stall, dynamic stall and dynamic

stall and wake theories, which are described in Ref. [6]. As in the experimental rotor,

the analytical model has four blades of an NACA 0012 airfoil section. The airfoil-section

quasisteady stall characteristics are determined following Ref. [11] at a Reynolds number

of 1.8×106. For the lift model, the quasisteady lift coefficient Cz, and extrapolated lift

coefficient Cz, are given by

C_l = a sin c_cos c_ 0° _< c_ < 1800

0
Cz, = Cz_ 0° <- a <- %s

(la)

(lb)

12
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o
Cz, = asin _,s cos_,, _,, < a < 450 (lc)

Cz, = a sin a,, cos a,, sin 2a 450 _<a < 1350 (ld)

Cz, = -asina,, cosa,, 135 ° < c_ < 1660 (le)

C=, = C=, 1660 <_ a <_ 1800 (if)

where a = 6.28 and as, = 14°. Figure 6 shows the quasisteady lift coefficient for 0 ° _< a _<

360 °. It also includes a comparison with the static test data from Ref. [11] and with the

extrapolated linear-lift coefficient C=_ according to Eq. (la).

For the drag model, the quasisteady drag coefficient Cd, and the constant drag coefficient

Cdo are:

Cdo = 0.01 (2a)

Cd_ = 1.05 - (1.05 - C_o)COS2a 0 ° < a < 3600 (25)

The variations of these coefficients for 0 ° < a <_ 360 o are shown in Fig. 7, which also

includes test data from Ref. [11].

For the pitching moment model, the quasisteady moment coefficient Cm, is given by

oCm, = Cmo 0° < a 5 a,_

o
Cm, = Cmo - 0.0582257tan-l(a - ass) as_ < a <_ 200 (3b)

C,,_ = C,_ o - 0.55 sin(a - 20 °) - 0.0842201 cos(a - 20 °) 200 < a < 101.29410 (3c)

C,_, = Cmo - 0.55641 cos[0.75(a - 101.2941°)] 101.29410 < a _< 1700 (3d)

C,_, = 0.3461497[0.1(a- 170°)] 1700 < a <_ 1800 (3e)

where C,,o = 0.0. Figure 8 shows the variation of C,,, from Eqs. (3a)-(3e) and the test

data from Ref. [11].

The dynamic stall parameters used in the ONERA stall model are the same as those

for an NACA 23012 airfoil section; these are given in the Appendix; for additional details,

see Ref. [6]. To include wake effects, we use the finite-state three-dimensional wake model,

which is based on six harmonics and three radial shape functions for each harmonic; this

leads to 39 wake states. Although a detailed convergence study with respect to the number

of harmonics and radial shape functions has not been carried out in forward flight, the wake

model should provide results close to the converged values for CT/er, < 0.05.

17
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3.3 Trim Analysis

As detailed earlier, the collective pitch and shaft tilt angles are known control inputs.

Therefore, trim analysis per se refers to finding the lateral and longitudinal cyclic control

inputs for minimized 1/rev flap moment at the 12% radial station and to finding the cor-

responding initial conditions for the periodic responses. The trim analysis is based on the

shooting method with damped Newton Iteration, which generates the FTM as a byproduct.

The modal damping levels and frequencies are obtained from the eigenvalues and eigenvec-

tots of the FTM [12]. This analysis still requires two additional trim equations that satisfy

the required trim conditions of minimized 1/rev flap moment at 0.12R. These trim equations

are given in the next section.

3.3.1 Flap Moment Equations

Consider a generic material point on the blade at a radial location _ from the hinge

offset. As shown in Fig. 9, the generic point is subjected to inertial, aerodynamic and

centrifugal forces. It is expedient to express the components of each of these forces in the

undeformed blade coordinate system xyz. Let £_ and £_, represent the total horizontal

and vertical forces parallel and perpendicular to the undeformed x-coordinate, respectively.

Similarly, let J_v represent the total moment acting parallel to the undeformed y-coordinate

and let E] represent the 0.12R radial location about which the flap moment is computed.

Following Ref. [13], we predict the flap moment by the force-integration approach, in which

the sectional forces and moments are integrated over the blade span to obtain the total

moment. Therefore, the total flap moment is given by

= [ (_ [w(_)- w(_s) ] - _:_(_-_s)+ Mo} d_ (4)
de 1

Now, we express the forces and moment in Eq. (4) as a sum of inertial and aerodynamic

components. The inertial component includes contribution from the centrifugal forces as

well. Thus we have

21



wherethe superscripts I and A indicate that the contributions are of inertial and aerody-

namic origin. Substituting Eq. (5) in Eq. (4), we get

I

g-

+ {cAc:(:t--:(:'/I --cA(:--:'/ +MA}
I

= J]¢_ (_f)inertiM q- .A/_ (_f)aerodynamic (6)

The expressions for sectional inertial forces, £t and £{,, can be derived by applying

Newton's second law:

£1 = £lui + izlvj + elk = ff (7)

Substituting for the blade acceleration relative to an inertial frame and performing the cross-

sectional integrals, we get [6]

c'_= -_ [-2_,a- (: +:h)a' + _.c:a'] (s)

c / = -_ [e + 2_..n++ _..a'(: + :hi] (9)

In deriving the above equations, we neglect the axial deformation.

Similarly, the sectional inertial moments can be derived from

j_v'[ I = MIui + :IcIIvj + .,U_k = -ff,,s x a dq d_ (10)

where s represents the moment arm (see Ref. [6]). Sustituting for s and a and performing

the cross-sectionM integrals, we get

M1 = _N[__'+f_2_,]{(_2 _k_m_)sin0 cos O}

-- ml COS2

Substituting Eqs. (8), (9) and (ll) for the inertial part in Eq. (6) and after nondimension-

alization, we get

.tic'[ inertial

p_b_2R 4
M(¢s, _)inerti_ = --a._"le{2m _,[w(_) -- w(¢i)]

7 a_I
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- &_ _ [_(x)- w(_s)]+ _(x -_s)+ 2&_ _(z -_s)

+ &_(_ - _s)(_+ _,,)+ _,_'sin° cosO- _k_ o'sinOcosO
"! 2

+ mk_,+£'sin 2 0 - mk_w'sin 2 0 - 20 mk_, sin 2 0

_ k 2m m2flvc sin2 O} dx (12)

Now, substitution of modal expansions for w and v in Eq. (12) gives

./_( El, l/) )inertial

+

+

+

+

NOM NOM

6a{ E E [2FM_jViWj-flp_FM_W, Wj]
"/ i= l j=l

NOM

[FAI3Wi + FM_(i(_ + 23wFM_Vi]
i=1

NOM

Z
i=1

NOM

[FM/6sin0cos0_ - FMgsinOcosO_]

Z [FM[ sin 2 0I_ - FM: sin 20Wi]
i=l

_p_FM s - (20 + five) sin 20FM 9} (13)

The aerodynamic contribution to flap moment is obtained from sectional aerodynamic

forces and moments, which are calculated at the mid point of each aerodynamic element.

Hence, we use a force-summation scheme instead of integrating the forces and moments along

the length of the blade. Thus, in terms of sectional aerodynamic forces and moments, the

flap moment due to aerodynamics can be obtained as

./_(_f,_)aerodynamic

p_ bfl 2R 4
= "M( e f' _2 )aerodynamic

NEL

= - _ £,_,x S +
n=l

/Xx,_ (14)

In the above equation, xS. and Ax_ represent the radial distance of the mid point from the

0.12R radial station and the length of the n-th aerodynamic element, respectively. Expressing

Eq. (14) in terms of sectional aerodynamic forces and moments, we get

£.A = -(v'L,, + w'L,.) (15)

24



= L,. (16)

+_A _--_v'M¢ (17)

where Lv L_ and Me are the sectional aerodynamic forces and moments described in Ref.

[6]. Substitution of Eqs. (15)-(17)into Eq. (14) gives

,._ (e j", 1))aerodynamic

NEL

= _[-(v'L,, + w'Lw)[wCxf)-w(ef)]
n=l

- L,_x] + v'M¢],_Ax,_ (18)

Substituting modal expansions, we rewrite the above equation as

M(ef, _))aerodynamic

NEL NOM NOM

= E { E E [-fl_/[:? V+WjLv" -- FM:J tWiWjLw_ ]
n=l i=1 j=l

NOM

+ E FM:2V M+.-
i=1

(19)

Similarly, with the substitution of Eqs. (13) and (19) in Eq. (6), the total flap moment at

the radial location el is given by

6a NOM NOM

i=t j=l

+

+

NOM

[2FM:j f/iWj - Sv_FM_jWiWj]

E [FM+Wi + FM:('_'i + 2_p_FM_VI]
i=1

NOM

E
i=1

NOM

[FMBsinOcosO_- FM6 sinOcosOVi]

+ E [FM: sin20_i - FM:sin2OWi]
i=1

+ 3v¢f?vl s - (2t} + 3v_) sin 20FM 9}

NEL NOM NOM

+ E { E E [-FM:°V_Wj Lv,, - FM:]WiWjL,_.]
n=l i=1 j=l

NOM

+ E FYI_ViM+. - L_o.z]. }
i=1

(20)

The Galerkin-type integrals accounting for spatial contributions are detai|ed in Ref. [6].
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3.3.2 Trim Equations

Equation (20) gives the total flap moment acting at the radial station es; that is, at the

12% radial station. To obtain the 1/rev components of flap moment, we expand Eq. (20) in

terms of Fourier series as

,--_(e/, _)= .'--_o + E [Mnc cos(rap)+ M_, sin(rig-,)] (21)
n_l

For n = 1, we get

)--_(e/, _) = 7-_0(eS) + _lc(e/) cos _ + Ml,(e/)sin _ (22)

where

-- 1/,2_
_lc(ef) = _ JO M(ej,_)) cos _2 d_) (23)

1 [ 2__ls(e/) = _.io ,M(e/,_b) sin_pd0 (24)

Therefore, the required trim conditions are

Mi_(es) = _1/2_4(es,_ ) cos _'de = 0 (25)
7r ./0

M-,,(ef) = -7rlL2_./M(ef, 0)sin _d_ = 0 (26)

Thus, Eqs. (25) and (26) represent the trim equations, which are solved together with the

response periodicity conditions.

3.3.3 Steady Flap Moment Based on the Curvature Method

Concomitant to the force-integration method, the steady flapping moment at the radial

location es is also estimated by the curvature method. That is,

'_(_S' t) [A 0_1 (27)

In terms of mode shapes and generalized coordinates, Eq. (27) is expressed as

NOM

i=l

Therefore, the steady flap moment is given by

lf0 "Mo( s) = d,b (29)
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4 Correlations

We begin the correlation with the nonrotating and rotating frequencies of the blade

modes in flap bending, lag bending and torsion. We then correlate with the lag regressive-

mode damping, control settings of lateral and longitudinal cyclic pitch angles and finally root

flapping moment at the 12% radial station. The baseline parameters for these predictions

are identified in Table 4.

Table 3 shows a comparison between the data and predicted nonrotating frequencies for

flap bending, lag bending and torsion modes; the data are available for three fundamental

flap-lag-torsion modes as well as for the second and third modes in flap bending. The

correlation is very good in that the maximum error in the prediction with respect to the

data hardly exceeds 5.5%. Figure 10 shows the variation of the rotating frequencies with

rotor rotational speed f_ for the first two flap-lag-torsion modes. For example, in forward

flight f_ = 1700 rpm and the corresponding predictions of the dimensionless (dimensional)

rotating frequencies for the fundamental flap-lag-torsion modes are 1.13 (32.02 Hz), 0.7

(19.83 Hz) and 2.86 (81.03 Hz), respectively. The rotating-frequency data are available

over a range of f_ values for the first lag mode only, and here as well, the correlation is

very good. For completeness, Fig. 10 also includes the nonrotating-frequency data on the

fundamental flap-lag-torsion and second-flap bending modes.

Compared to the frequency data in Table 3 and Fig. 10, the data on damping level,

cyclic pitch controls and root flapping moment are far more extensive [9, 10]. Accordingly,

we present the correlation with these data in three phases: lag regressive-mode damping in

the first phase (Figs. 11-14), lateral and longitudinal cyclic pitch controls in the second

phase (Figs. 15-22), and finally root flapping moment in the third phase (Figs. 23-30).

Following Maier [10], we select four typical test cases with a two-degree precone, for which

the updated database is available: three-degree collective with three cases of shaft angle

o_s = 0 °, 3o and 6°, and 5.9-degree collective with shaft angle c_s = 6 °. The analytical

predictions are from the quasisteady stall, dynamic stall, and dynamic stall and wake aero-

dynamic theories. As seen from the data in Fig. 11 (00 = 30 and c_ = 0°), the damping

increases slowly up to an advance ratio of 0.2, and thereafter it more or less decreases with
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Table 4: Baseline Parameters for the Experimental Rotor

Lift curve slope, a (1/rad) 6.283

Lock number, "y (based on a = 6.283) 7.5896

Profile drag coefficient, Cdo 0.01

Camber of NACA 0012 airfoil section, c_c 0.0 °

Lift coefficient at c_ = 0, Cz0 0.0

Pitching moment coefficient at o_ = 0, Cm0 0.0

Quasisteady stall angle of NACA 0012 airfoil section, _ss +14 o

Rotor solidity, as 0.0962

Hinge offset, eh (in) 4.7

Blade root cutout, rc (in) 13.76

Blade precone,/3pc ( deg) 2

Number of aerodynamic elements, NEL 5

Number of modes, NOM 5

increasing #. Thus, the data exhibit a convex trend of damping variation with #. Overall,

this trend of the data is well predicted by all three theories. Furthermore, the thrust level

CT/Crs is low throughout the data range (0 _< t_ _< 0.31); in fact, it is less than 0.03, and for

# > 0.2, it slowly decreases with increasing advance ratio. Given the low-thrust condition,

this is expected. The comparative aspects of the correlation by three theories are instructive

as well. For example, despite some overprediction for # < 0.05, the dynamic stall theory

provides good correlation throughout. Similarly, the quasisteady stall theory closely follows

and underpredicts the dynamic stall theory. This underprediction, though marginal, is con-

sistently observed throughout the data range. Compared to these two theories, the dynamic

stall and wake theory provides overall better correlation in that it picks up the finer varia-

tions of the experimental data. For example, for 0 <_ # _< 0.05, it predicts a nearly constant

damping level and agrees with the data better, and for # > 0.15, it gradually follows the

dynamic stall theory. The minor differences between the quasisteady stall and dynamic stall

theories are due to unsteady lift effects; differences between dynamic stall and dynamic stall

and wake theories are due to dynamic wake effects.

In Fig. 12, 0o = 30 and c_s = 3°. Here as well, the data show a convex trend of
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the damping level. The thrust level, which is about 0.01 in hover, increasesto 0.022for

# _ 0.1 and thereafter decreasesto 0.013at # = 0.31. Sincethe thrust level is low, all three

aerodynamictheories provide good correlation. In particular, the dynamic stall and wake

theory reducesthe overpredictionsof the quasisteadystall and dynamic stall theories for

# < 0.1 and gradually followsthe other two theoriesfor # > 0.2.

Now, we cometo Fig. 13 for 00 = 3o and o_, = 6 °. As seen from the data, the damping

level very slowly increases with increasing advance ratio for # <_ 0.1 and thereafter, it

sharply decreases. The thrust level is about 0.01 in hover and increases to a maximum value

of 0.017 at # = 0.15 and thereafter decreases with increasing #; in fact, it is nearly zero at

# = 0.31. The predictions from the quasisteady stall and dynamic stall theories show slowly

increasing damping up to # _ 0.1 and thereafter decreasing damping. However, the rate of

decrease in damping is small. Moreover, these two theories somewhat overpredict damping

for 0 <_ # _< 0.05. By comparison, the dynamic stall and wake theory improves the correlation

for # _< 0.15, and for # > 0.15, it slowly merges with the other two theories. This merging

is expected since the thrust level, which is low to begin with, decreases with increasing # for

# > 0.15 and more or less reduces to zero at # = 0.31. In summary, the correlation from the

dynamic stall and wake theory is adequate for # <_ 0.2 and needs quantitative corrections

for # > 0.2, which merits further investigation.

Figure 14 is for 00 = 5.9 o and oe, = 6°, and the data are available from a near-hovering

condition with # = 0.04 to a fairly high-speed condition with # = 0.36. Despite some data

scattering around # = 0.05 and 0.35, the data show that the lag damping increases for

0.04 _< # _< 0.15 and decreases for # > 0.15. We also mention that the thrust level increases

from 0.034 in hover to 0.045 at # _ 0.1 and decreases to 0.02 at # = 0.36. Overall, all three

theories predict the trend of the data. However, the dynamic stall theory and the quasisteady

stall theory (except at # _ 0.15) overpredict damping consistently. The differences between

the quasisteady stall and dynamic stall theories are mainly due to unsteady lift effects, which

increase with increasing collective pitch; see Fig. 13. The dynamic stall and wake theory

significantly reduces the overpredictions of the quasisteady stall and dynamic stall theories

and thereby improves the correlation. Overall, the dynamic stall and wake theory provides

good correlation.
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In Figs. 15-17, wepresentthe correlationfor lateral cyclic-pitch angle0¢ for as = 0°, 30

and as = 6 °, respectively. In all three figures, the data show known trends: 0c is zero at

# = 0.0, increases suddenly around # = 0.05 and thereafter slowly decreases with increasing

advance ratio. The rate of decrease is higher in Fig. 17 than in Figs. 15 and 16. The

predictions from the quasisteady stall and dynamic stall theories are nearly the same for

all three values of as. And these predictions show that the lateral cyclic pitch required to

minimize 1/rev flapping moment is negative and that its magnitude monotonically increases

with increasing advance ratio. Although these trends of the predictions are at best consistent

with those of the data for # > 0.05, overall they are quantitatively inaccurate. But inclusion

of wake effects dramatically improves the correlation, both quantitatively and qualitatively.

In particular, the dynamic stall and wake theory predicts the sudden increase around # =

0.05; that is, in the transition regime when the flow over the rotor diskis associated with a

large amount of shed and trailing vorticities. With increasing #, the dynamic stall and wake

theory predicts the decreasing trend of the data. However, this rate of decrease is relatively

higher and, hence, the correlation needs further quantitative correction for # > 0.2.

In Fig. 18, 00 = 5.90 and c_s = 6 °. Here as well, the data show a variation for Oc similar to

that in Figs. 15-17; that is, suddenly increasing at # = 0.05 and thereafter decreasing with

increasing advance ratio. As seen from Fig. 18, both the dynamic stall and quasisteady stall

theories fail to predict this variation and are not acceptable. By comparison, the dynamic

stall and wake theory not only predicts this variation but also provides good correlation

throughout. In summary, Figs. 15-18 show that it is important to include wake effects in

the prediction of lateral cyclic pitch angle 0c and that the correlation in Figs. 16 and 17

merits further improvement at high speed conditions, say, # > 0.25.

Now, we show the correlation for longitudinal cyclic pitch angle 0_ for four cases: three-

degree collective with as = 0 °, 30 and 60 in Figs. 19-21, respectively, and 5.9°-collective

with as = 60 in Fig. 22. The data are available from hover to an advance ratio of 0.31

and show that negative 02 is required for the present trim condition of minimizing 1/rev

root flapping moment. As for the details, we begin with Fig. 19; the data show that 0s

is nearly zero up to # _ 0.05 and that thereafter it increases (negative) with increasing _.

The predictions from the quasisteady stall and dynamic stall theories show that 0s essentially
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increases (negative) with increasing #, and the predictions from these two theories are nearly

identical. Compared to the data, however, this rate of increase is milder. Moreover, the

theories fail to capture the finer details in the variations of 0s with # at low advance ratios,

say for # < 0.1. By comparison, the dynamic stall and wake theory predicts that 0s is nearly

constant for # _< 0.075. Thereafter, however, it basically follows the other two theories and,

all in all, requires a bit of quantitative improvement for # > 0.1. Similar trends are observed

for c_, = 3 o in Fig. 20. In summary, as seen from Figs. 19 and 20, the quasisteady stall

and dynamic stall theories provide satisfactory correlation and the dynamic stall and wake

theory follows the other two theories with noteworthy improvements for # < 0.05 and some

overpredictions for 0.05 _< # <_ 0.1.

In Fig. 21 the data show a similar variation for 0s as in Figs. 19 and 20. Here as well, the

predictions from the quasisteady stall and dynamic stall theories agree, and they correlate

well with the data. The dynamic stall and wake theory brings the theory closer to the data

at # = 0.05 but it also takes the theory somewhat away from the data at # = 0.1. For

# > 0.1 it virtually merges with the other two theories. Overall, all three theories provide

good correlation.

The data in Fig. 22 show that 0s (negative) increases with increasing advance ratio.

The predictions from the quasisteady stall and dynamic stall theories are nearly identical

and provide adequate correlation. The dynamic stall and wake theory slightly improves

the correlation for # > 0.25, but compared to the other two stall theories, it also slightly

overpredicts for # < 0.25. Nevertheless, it also provides adequate correlation overall.

The next four figures show the correlation for the root flap moment from the curvature

method. The three-degree collective case with (_, = 0 °, 3 ° and 60 is covered in Figs. 23-25,

respectively, and the 5.9-degree collective case with o_s = 60 is covered in Fig. 26. The

data show that the flap moment increases with increasing # up to a certain value of #, say,

around 0.2 in Figs. 23 and 24 and around 0.15 in Figs. 25 and 26, and that it decreases

thereafter; that is, a convex-type variation. Surprisingly, the predictions from all three

theories are nearly identical. Although these three theories predict the trend of the data,

they underpredict (negative) flapping moment throughout the data range except in Fig. 25

(0o = 3 ° and as = 60 ) for # > 0.25 and in Fig. 26 at # _ 0.36.
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Figures 27-30 are based on the force integration method. Here as well, the predictions

from the three aerodynamic theories are nearly identical and they consistently underpredict

the flapping moment for all values of/_. Nevertheless, they predict the trend of the data for

all four cases: o_ = 0 °, 30 and 60 with 00 = 30 and o_ = 60 with 00 = 5.90 . Overall, the

required quantitative improvements in Figs. 23-30 merit further investigation.

5 Toward Improving the Correlations

We are pursuing a two-pronged approach toward improving the preceding correlation.

The first approach is based on improving the dynamic stall characteristics and the results are

presented in the next section. The second approach is based on adapting a transient-response

analysis [14] somewhat similar to the moving block analysis. It is still in a developmental

stage and the research is continuing.

5.1 NACA0012 Dynamic Stall Characteristics

Thus far, the correlations in Figs. 11-30 are based on the dynamic stall parameters of

an NACA 23012 airfoil section used in Ref. [3]. It needs to be emphasized that the database

on dynamic stall parameters is extremely limited and that the state of the art does not

permit an accurate description of these parameters, no matter which airfoil. (Throughout,

the quasisteady stall parameters of an NACA 0012 airfoil section are used.) Given this

background, it is instructive to study the sensitivity of the preceding correlations to the

dynamic stall parameters. That study is presented in Figs. 31-50, in which the correlations

are based on the dynamic stall parameters of an NACA 0012 airfoil section used in Ref.

[8]. These correlations are also presented in three phases: Figs. 31-34 on lag-regressive

mode damping levels, Figs. 35-38 on lateral cyclic pitch control input, Figs. 39-42 on

longitudinal cyclic pitch control input, and Figs. 43-50 on root flap moment.

Figures 31-33 show the sensitivity of lag-regressive mode damping to dynamic stall

parameters for 0o = 3 o with o_, = 0 °, 3o and 6 o , respectively, and Fig. 34 for 0o = 5.9 °

and o_, = 6 °. Overall, Figs. 31-34 show that the sensitivity of the damping predictions

to changes in the dynamic stall parameters is negligible. The remaining sets of correlations
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further demonstrate this negligible sensitivity, Figs. 35-42 with respect to the lateral cyclic

pitch control and longitudinal cyclic pitch control angles and Figs. 43-50 with respect to

the root flap moment.

6 Concluding Remarks

The preceding correlation covers a comprehensive database (0.0 _< # <_ 0.36, 0 ° _< 0s <_

5.9 °, 0 ° _< o_, _< 6 °) on lag damping, lateral and longitudinal cyclic pitch angles and root

flap moment. Overall, the dynamic stall and wake theory provides fairly good correlation.

A major finding is that inclusion of dynamic wake dramatically improves the correlation for

the lateral cyclic pitch angle 0c. We are continuing this correlation effort to cover additional

data received recently from the AFDD and to adapt a transient-response-analysis method

of Ref. [14], which provides a means of predicting damping levels and frequencies without

perturbations as required in Floquet analysis.
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Appendix

Dynamic Stall Parameters

NACA 23012 Airfoil Section(Ref. 6)

A = 0.2

5 - 0C_,
a

Oa 2

(30a)

(30b)

U) = 0.10 + 0.023(1_°1- 13°)u(l_°l- 130 ) if I_°1 <_ 21.70

= 0.3 if la°l > 21.70 (30c)

0.105
d----

zv

(30d)

2- 5.1 tan -1 r.,,ll.21(]6_0 I _ 130) ).3 X 130 )

where u is the unit step function (30e)

a_ = 0.32 (31a)

rd = 0.2 + 0.1 (ACz) 2

Ed = -0.015 (ACz) 2

am = 0.25 q- 0.1 (ACz) 2

(31b)

31c)

(32a)

(a2b)

(32c)

NACA 0012 Airfoil Section (Ref. 8)

= 0.15

cqCq a

Oc_ 2

(33a)

(33b)
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_(1 +d2)-- [o.2+o1(_cz)2]2

2dw = 0.25 + 0.1 (ACz) _

= -o.6 (AC.) 2

ad = 0.32

r_ = 0.2 + 0.1 (ACz) 2

Ed = -0.015(ACz) 2

am = 0.25 + 0.1 (ACz) _

rm = 0.2 + 0.I (AC_)_

E,_ = -o.6 (_Cz) _

(33c)

(33d)

(33e)

(34a)

(34b)

(34c)

(35a)

(35b)

(35c)
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